SCHAEFFLER

FACT SHEET XXL Round 3 WEC LE MANS June 17/18, 2017

High-tech wonder

Porsche is competing in the WEC with two 919 Hybrid cars

Schaeffler and Porsche

Partners for 70 years both on and off the track

20

Technology prototype The Porsche 919 Hybrid is the title defender in the WEC

Editorial

A gripping competition and electrifying technol-

lörg Walz Vice President Communications and Marketing Schaeffler Automotive

ogy – the races of the FIA World Endurance Championship (WEC) make the hearts of all fans as well as those of the enaineers involved beat faster. Thanks to the requlations that are focused on the efficiency of the vehicles, the exchange

production of the manufacturers with WEC commitments is an intensive one. Technology transfer is the key word – an ideal platform for Schaeffler. With its ideas and products, our company is actively involved in developing "mobility for tomorrow." Since 2014, we have been partnering with Porsche in the WEC and have celebrated important title wins and victories there – including two successes in the 24-hour race at Le Mans. We are hoping for this string of success to continue in 2017.

Contact

Schaeffler Technologies AG & Co. KG **Communications and Marketing** Schaeffler Automotive Industriestr. 1-3 91074 Herzogenaurach presse@schaeffler.com www.schaeffler.com

Contents

- 2 Schaeffler in the WEC
- 4 2017 race calendar
- 6 World-famous since 1923: the city of Le Mans
- 8 Porsche 919 Hybrid
- 10 The technology in the WEC
- 14 Hybrid powertrain concepts
- 16 The drivers
- 18 Electric mobility at Schaeffler
- Schaeffler and Porsche 20
- 22 The Schaeffler Group
- 23 Schaeffler and the WEC facts and figures
- Info about the 24 Hours of Le Mans 24

longer the most powerful ones.

Technology transfer

Efficiency and The FIA W the ultimate high tech

Nine races per season in Europe, America and Asia, race durations of six to 24 hours and the participation of renowned manufacturers such as Alpine, Aston Martin, Ferrari, Ford, Toyota and Schaeffler's partner Porsche - the FIA World Endurance Championship (WEC) continues to thrill motorsport fans around the globe in its sixth season.

The absolute highlight on the calendar: the legendary 24-hour race at Le Mans which is regarded as the world's most important endurance race. Schaeffler, as a partner of manufacturer Porsche that won both the drivers' and manufacturers' world championships in 2015 and 2016 as well as the French race around the clock, is in the thick of the action.

The FIA World Endurance Championship (WEC) represents the ultimate of all world championships. The high-tech LMP1 race cars are fully focused on efficiency

> automobiles, relying - just like in the WEC - on continually improving hybrid systems. Progress doesn't stop.

Characteristic for the WEC are its revolu-In 2017, the Porsche 919 Hybrid is again tionary regulations. Since 2014, in the top competing in the highest energy efficiency category, LMP 1, in which Porsche competes class established by the regulations. This with two 919 Hybrid cars, the output of the means that on a 13.629-kilometer lap at race cars has no longer been controlled by the Le Mans, the car is allowed to use eight meregulations. Instead, their energy consumption gajoules of recuperated energy while being li-(in megajoules) has been subject to control mited to a maximum fuel consumption of 4.31 in other words, not the amount that arrives at liters. Both consumption levels are closely the wheels but that which flows into the fuel monitored and accounted for after each lap. tank and batteries and is ultimately used. This For the recuperation technology used in the rewards the most efficient contenders and no 919 Hybrid, Porsche in 2017 again relies on a combination of kinetic energy recuperation at the front axle and conversion of exhaust energy into electricity. The electrical energy is As a result, a perfect parallel has been creplaced into interim storage in lithium-ion batated, as the engineering designers for volume teries and can be accessed to boost output by production keep inventing increasingly efficient the driver pushing a button.

A trip around the world with nine stops

Europe, North and Central America, the Far East and the Arab region - the FIA World Endurance Championship is fully living up to its ranking again in 2017. The iconic 24-hour race in France marks the pinnacle event of the season

April 16, 2017

Another podium **Spa-Francorchamps Belgium**

Around-theclock action Le Mans France

lune 17/18. 2017 The maior highlight of the WEC season. Porsche won the 24 Hours of Le Mans for the first time in 1970 and, following its comeback in 2014, most recently in the two past years.

Home round **Nürburgring Germany**

July 16, 2017 The tradition-steeped German track has been part of the WEC calendar since 2015. Porsche, with victories in both previous events, has been causing local fans to cheer.

¡Viva México! Mexico City Mexico

September 3, 2017

At the Autódromo Hermanos Rodríguez sports car races were held nearly 30 years ago. In 2016, the circuit made a remarkable WEC debut.

American way Austin USA

September 16, 2017 The Circuit of the Americas is the "youngest" race track on the calendar. In 2012, its inaugural year, the venue hosted Formula 1 and since 2013, the WEC has been racing on the U.S. circuit as well.

Tradition galore Fuji Japan

October 15, 2017 As far back as in 1967, sports cars were battling for alory and honor in the 1000 Kilometers of Fuji. Since the WEC's inaugural season in 2012, the Speedway has been an integral component of the series.

1

1

1

2

2

2

3 3 3

4

6

7

7 7

9

10

12 Dominik Kraihamer (A) Enso

Driver	Manufacturer	Pts				
Anthony Davidson (GB)	Toyota		12	James Rossiter (GB)		
Kazuki Nakajima (J)	Toyota		12	Oliver Webb (GB)		
Sébastien Buemi (CH)	Toyota		13	Gustavo Menezes (USA)		
Brendon Hartley (NZ)	Porsche	33	13	Matthew Rao (GB)		
Earl Bamber (NZ)	Porsche	33	14	Jean-Eric Vergne (F)	Oreca	
Timo Bernhard (D)	Porsche	33	14	Jonathan Hirschi (CH)	Oreca	
André Lotterer (D)	Porsche	28	14	Tor Graves (GB)	Oreca	
Neel Jani (CH)	Porsche	28	15	David Heinemeier (DK)	Oreca	
Nick Tandy (GB)	Porsche	28	15	Mathias Beche (CH)	Oreca	
Kamui Kobayashi (J)	Toyota	19.5	15	Nelson Piquet jr. (BR)	Oreca	
Mike Conway (GB)	Toyota	19.5	16	Roberto Gonzalez (MEX)	Oreca	
Nicolas Lapierre (F)	Alpine/Toyota	16	16	Simon Trummer (CH)	Oreca	
Ho-Pin Tung (CN)	Oreca	14	16	Vitaly Petrov (RUS)	Oreca	
Oliver Jarvis (GB)	Oreca	14	17	José Maria Lopez (RA)		
Thomas Laurent (F)	Oreca	14	18	Alex Bundle (GB)	Oreca	
Bruno Senna (BR)	Oreca	14	18	David Cheng (CN)	Oreca	
Julien Canal (F)	Oreca	14	18	Tristan Gommendy (F)	Oreca	
Nicolas Prost (F)	Oreca	14	19	Romain Dumas (F)		0.5
Alex Lynn (GB)	Oreca		20	André Negrão (BR)		0.5
Pierre Thiriet (F)	Oreca		20	Nelson Panciatici (F)		0.5
Roman Risunov (RUS)	Oreca		20	Pierre Ragues (F)		0.5
Stéphane Sarrazin (F)	Toyota		21	Ben Hanley (GB)	Oreca	0.5
Yuji Kunimoto (J)	Toyota		_			
Emmanuel Collard (F)	Oreca	8.5				
François Perrodo (F)	Oreca	8.5		Manufacturers	s' classif	ication
Matthieu Vaxiviere (F)	Oreca			P Manufacturer		Pts
				_		

1 Toyota

2 Porsche

5

Loyal companion Sakhir Bahrain

November 18, 2017 The Bahrain International Circuit is one of six race tracks to have appeared on the calendar each year ever since the WEC's debut. Since 2015, the season finale has been held there.

Local color **Shanghai China** November 5, 2017 The track configuration of the

Shanahai International Circuit, a Grand

Prix circuit since 2004, has taken cues from the Chinese character shàng $oldsymbol{\perp}$

(English: up, above, ascend).

69.5

61

The historic city south of Paris has had the worldwide ring of motorsport to its name since 1923, and is currently in the process of getting ready for the mobility of tomorrow: on rails

A population of 150,000. In 21st place of France's most populous cities. The fame of Le Mans could be assumed not to be much greater than that of Paderborn, its German sister city, if it weren't for this one uniquely gripping race that electrifies the entire motorsport world: the 24 Hours of Le Mans. Since 1923, the city has been transforming into a mecca for some 265,000 motorsport fanatics. For more than a week in the month of June, conditions in the city are exceptional. Over the past nearly 100 years, Le Mans has evolved into a synonym for reliability related to the automotive industry and motorsport. Particularly for manufacturers with commitments in sports car endurance racing, the 24 Hours of Le Mans not only marks the pinnacle of racing, but an event where prestige is at stake: will the technology that months of fine-tuning work have been invested in pan out? Taking a plane to the local Aéroport du Mans or the TGV train are good ways to travel to the super event. Le Mans has been connected to the French high-speed train network since 1989.

Inside the city, residents and tourists can superbly get around on rails as well. Since 2007, Le Mans has had a modern streetcar system called the Tramway du Mans. The north-south route covers more than 15 kilometers from Université to Antarès and in 2014, another line was opened that serves the north-eastern part of the city. The operator, Société des transports en commun de l'agglomération mancelle (SETRAM), today enjoys some 50,000 passengers per day. which, in view of the population only being about three times this number, is amazing. These figures clearly prove that urban residents are definitely inclined to give preference to public transportation over their personal cars.

This is a trend that can be seen in other French cities as well. Strasbourg, Nantes and Bordeaux have had modern streetcar networks for quite some time. Valenciennes, Mulhouse and Saint-Etienne have recently followed suit, and Nice, Marseille and Grenoble are going to do so as well.

A city uses new approaches

Attracting major public attention, Paris inaugurated a brand new streetcar line as well at the end of 2016. The French capital in particular was in need of another public transportation alternative to its Métro. The "city of love" has been suffering from the threat of passenger car traffic collapsing for many years. As recently as last year, a cloud of smog engulfed the metropolis which made alarm bells ring especially with Anne Hidalgo. The mayor of Paris is personally endeavoring to declare war on automobile mania with various projects and to provide more room to "her" pedestrians and cyclists.

9

Suspension

Independent front and rear, pushrod system with adjustable dampers

High-tech wonder

The hybrid powertrain in the Porsche 919 combines downsizing turbo technology with efficient gasoline direct injection in a two-liter V4 IC engine. A lithium-ion battery serves as an accumulator for the electrical energy from two different recuperation systems – braking energy from the front axle and exhaust energy

MORI

HOPARD

Wheels/tires

Forged magnesium wheels, radial tires, front and rear: 310/710-18

Drivetrain

Rear-wheel drive, traction control (ASR), temporary all-wheel drive using boost by an electric motor on the front axle, sequential, hydraulically operated sevenspeed racing transmission

SCHAEFFLER

Monocoque

Fiber-reinforced construction of carbon fibers with aluminum honeycomb core

IC engine

DMG MORI

V four-cylinder engine (90-degree bank angle)

CHOPARD

Mobil

ICHELIN

MICHERIN

°6.

with turbocharger, four valves per cylinder,

2,000 cc cubic capacity, DOHC, one Garrett

turbocharger, gasoline direct injection

Dimensions

Length 4,650 mm Width 1,900 mm Height 1,050 mm Weight 875 kg

Output

IC engine < 500 HP on the rear axle MGU > 400 HP on the front axle

Brakes

Hvbrid svstems

ERS for recuperation of exhaust energy

KERS with a motor-generator-unit (MGU) on the front axle,

Hydraulic dual-circuit braking system, mono block light metal brake calipers, ventilated carbon fiber brake discs front and rear, brake force distribution infinitely variable by the driver, the front brakes recuperate energy

The FIA World Endurance Championship (WEC) with Le Mans as the pinnacle event of the season is regarded as one of the most challenging motorsport series in terms of technology. Thanks to a healthy mix of innovation and reliability of the vehicles, Schaeffler's partner Porsche has been celebrating major successes

Technology

High speed and high tech – the WEC combines both to a special degree, efficiency being the magic word. Which team, which manufacturer makes the best use of the opportunities provided by the regulations and technology? At the moment, there's hardly another more attractive, let alone more creative, stage to demonstrate the innovative prowess of high-end hybrid sports cars. The season's pinnacle event, the 24 Hours of Le Mans, in which the drivers are on track four times as long as in the season's other races, makes anything else pale in comparison. Thanks to a complex set of regulations for the top category, LMP, which has been in effect since 2014, the fastest contender at Le Mans is necessarily always the most efficient one as well. The one having covered the longest distance within 24 hours has extracted the maximum from a limited amount of fuel. Due to the major technological freedom in the areas of hybrid and powertrain technology, the manufacturers surprise with ever-new innovation impulses while delivering thrilling on-tarmac action in the process. The Le Mans race last year was only decided on the last race lap in favor of Schaeffler's partner Porsche.

CHO

Ideal platform for Schaeffler

Efficiency, high tech and reliability. In the WEC and at Le Mans, exactly the same topics

matter which now are in absolute focus in automotive engineering, and thus at Schaeffler, and will continue to be in the coming decades. The analogy between motorsport and production very closely approaches its original meaning again. The things that prove viable and win out in the world's toughest races demonstrate their fitness for use in production as well. The innovation-friendly regulations suit manufacturers and automotive suppliers like Schaeffler who "The 24 Hours of Le Mans pushes both man and machine to their absolute limits"

SCHAEFFLEH

Fritz Enzinger Head of LMP1 at Schaeffler's partner Porsche

aim to prove their technology expertise and the suitability of their visionary designs in front of large audiences around the globe.

The world's toughest test laboratory

The fascination exuded by Le Mans. The iconic French endurance race demands maximum performance twice around the clock – of humans and hardware, as well as of the engineers in the development laboratories. Revolutionary technologies have frequently passed their baptism of fire at Le Mans and subsequently went on to become firmly established in volume production. A short summary of past achievements: streamlined body styles, lightweight design, disc brakes and hybrid drive.

24 Hours of Le Mans facts

853.3 kWh

was recuperated by the victorious Porsche 919 Hybrid in 2016. This energy would allow an electric car¹ to cover a distance of 6,772 kilometers

250 km/h Average speed per lap, 220 km/h over the entire race duration

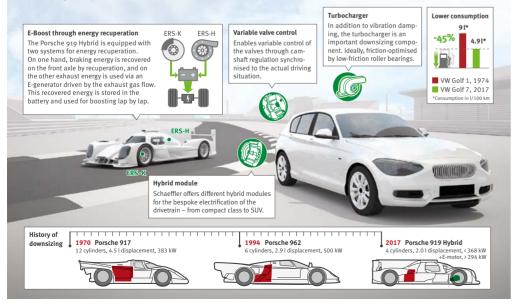
50 to 60 l cing fuel per 100 kilometers were consumed

by a Porsche 956 in the 1980s – nearly twice the amount of the current, much faster 919 Hybrid whose "thirst" is limited to about 32 liters

18 victories

No brand has mounted the very top of the podium more often than Porsche

For manufacturers and suppliers, Le Mans is a paradise. For Schaeffler, the legendary 917, for example, was a development prototype for valve train components that were subsequently produced by the millions. The development of turbochargers profited from Le Mans as well. In 1976, Porsche achieved the first victory of a turbocharged engine there.


Teamwork, momentum, determination

Success in motorsport is closely tied to the abilities of every individual but, above all, to teamwork. Motorsport demands innovation prowess and momentum, determination and courage – the same applies to Schaeffler's employees in their daily pursuit of standing the company's ground and furthering its position as a globally leading automotive supplier.

High-end technology paired with emotions – the motorsport commitment has been a vital element of Schaeffler's brand strategy for decades, be it with high-tech hybrids in the WEC, touring car action in the DTM or in the electrifying Formula E.

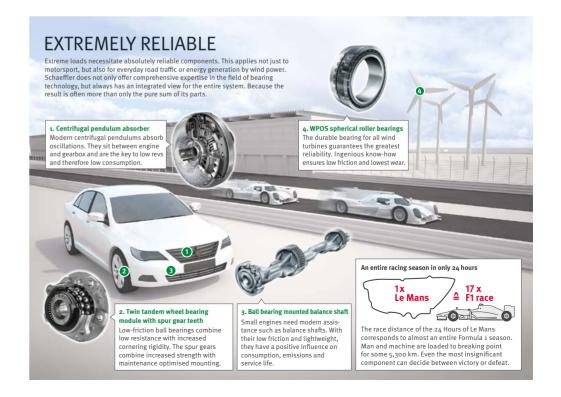
EFFICIENT MOTORING

Small engines save weight and with modern technology modern engines are genuine power plants despite having less cylinders – both on the race track and on public roads. Combined with systems to recuperate energy such as for example the recovery of brake energy (i.e. recuperation) the consumption level sinks significantly.

"The perfect stage"

Why do you have a joint commitment with Porsche in the WEC?

The answer is simple. Hybrid is becoming an increasingly important automotive topic – both on the road and in motorsport. In the WEC regulations, energy efficiency and forward-thinking technology play the key role.


What are you aiming to prove? Technological expertise. And the WEC, including Le Mans, provides the perfect stage for it. Especially in endurance racing with its extremely high demand for reliability we consistently learn new things.

But this is true as well for Formula E in which you've been on board ever since the inaugural season ...

Exactly. This is where we explore extremes. After all, at Schaeffler, we have and continue to gather a lot of know-how relating to the combination and interaction of units and

Prof. Peter Gutzmer Deputy CEO and Chief Technology Officer of Schaeffler AG

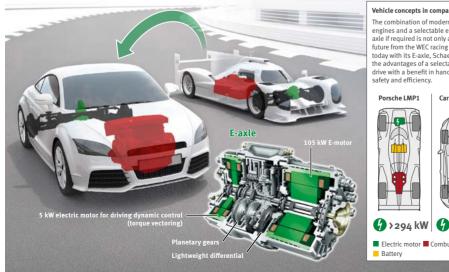
components. In Formula E, it is between the electric motor and the transmission, or in the WEC's hybrid, it's between the IC engine and the electric motor. In addition, motorsport is emotion – and that's what we need in electric mobility as well. That's why both series are ideal fields of activity for our company.

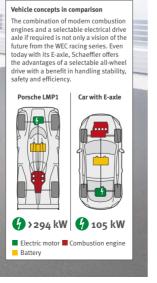
An electrifying *affair*

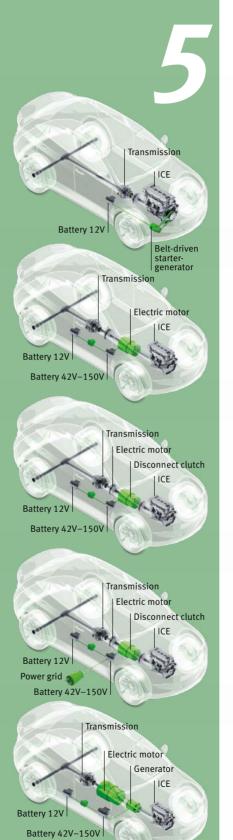
The powertrain concept of Porsche's Le Mans hybrid sports car is a forward-thinking one. A turbocharged downsized IC engine together with a powerful electric motor ensures dynamic and efficient propulsion. Schaeffler is developing diverse concepts to put hybrid powertrains on the fast track of everyday mobility as well

The first question to be clarified is the meaning of hybrid in the language of automotive developers. Put in a nutshell, a hybrid complements the conventional IC engine by a second source of propulsion and, today, this refers to electric motors.

tion in the marketplace. Not least due to the fact that "more electricity on board" makes it possible to replace other conventional mechanical or hydraulic components by electric ones.


One name, various concepts


In the automotive OEM and supplier industries, various hybrid systems are being tested and offered for diverse demands. As a pioneer in this field. Schaeffler possesses a wealth of experience and wide range of systems - see right-hand page. Every one of these innovative and intelligent concepts has its justifica-


Optimization in many areas Obviously, within the Schaeffler Group, the optimization of the IC engine continues to be driven with the same intensity as hybrid technology. In spite of all the progress that has already been achieved. Schaeffler still sees further potential of optimizing the efficiency of IC engines, by 10 percent for diesel and by 20 percent for gasoline engines.

ELECTRIC FOUR-WHEEL DRIVE

The connection of the combustion engine with an electric drive provides new opportunities. In motor racing, hybrid cars with four-wheel drive concepts represent the pinnacle of the technically feasible. In conventional road cars, the electrification of the drivetrain with increasing hybridization plays an important role. With its E-axle. Schaeffler provides an innovation that combines the electric drive with the possibility of wheel selective controllable driving power. All-wheel drive in connection with combustion engines is available to the driver when required

Comparison of *hybrid concepts*

Micro hybrid (12 volts)

The principle Micro hybrid refers to vehicles that are equipped with a startstop system and recuperate braking energy via a generator, in other words. continually charaina the battery. The starter-generator – the electric machine – cannot be used for propulsion.

In simple terms The brakes and coasting of the vehicle charge the conventional battery, so the engine no longer has to perform this "job." This saves fuel, just like the automatically shutting off and turning the engine on again when the vehicle stops, for instance at a traffic light.

Mild hybrid (48 volts)

The principle The electric motor (which may be an electric axle, see info box, Page 14) in the 48-V hybrid assists the conventional IC engine (ICE) with a power boost. Braking energy can be recuperated. Using the 20-kW electric motor, even fully electric driving to a limited extent is an option when the IC engine is disengaged.

In simple terms Less consumption, fewer emissions, more momentum – the "mild" 48-V hybridization yields many advantages from a moderate technology investment.

Full hybrid (>200 volts)

The principle Functions are similar to those of the 48-volt system. High-voltage technology, though, increases output as well as technology investment. Full hybrid vehicles can optionally be operated in all-electric mode, only using the IC engine or combined.

In simple terms A more powerful battery and a larger electric motor in this type of vehicle enable all-electric driving, albeit, as in the case of the 48-volt system, with shorter range and at lower speed.

Plug-in hybrid (>200 volts)

The principle While the battery of a mild or full hybrid is charged exclusively via braking energy or the IC engine, the battery of a plug-in hybrid can additionally be charged externally using the power grid. Therefore, a larger battery is utilized which allows clearly longer ranges to be achieved in electric mode.

In simple terms The battery and electric motor are suitable for mid-range distances and the system can be charged by plugging into a power outlet/ charging station.

Range extender (> 200 volts)

The principle Electric vehicles with range extenders have a powerful electric motor and enable all-electric driving over a comparably long range. IC engines are most frequently used as range extenders. They drive a generator which in turn supplies power to the battery and the electric motor.

In simple terms The vehicle operates in fully electric mode. The "small" IC engine merely serves to charge the batteries for the "large" electric motor.

Teamwork

In the WEC endurance races run for six hours – or even 24 as in the case of Le Mans - three drivers typically form a team, taking turns at the wheel after about two hours of racing. For the two 919 Hybrid cars in the field, Porsche can rely on an experienced sextet

Porsche 919 Hybrid

IN

100

Porsche 919 Hybrid

Timo **Bernhard**

Date of birth February 24, 1981

Place of birth Homburg/Saar (D)

Miesau (D)

1.74 m

60 kg

f timobernhard.de

🔰 @timo bernhard

🙂 timo-bernhard.de

🞯 timobernhard

Residence Bruchmühlbach-

Vita

Height

Weight

Earl **Bamber** DM

Vita

M

Date of birth July 9, 1990 Place of birth Wanganui (NZ) Kuala Lumpur (MAL) Residence Height 1.83 m Weight 74 kg

- **f** earlbambermotorsport 📁 @earlbamber
- earlbambermotorsport.com
- ☑ earlbamber

Brendon *Hartley*

SPARD

Place of birth Palmerston North (NZ) Residence Monaco (MC) Height 1.84 m 65 kg Weight

- **F** BrendonHartleyMotorsport
- 🥑 @BrendonHartley
- brendonhartley.co.nz
- Is brendon_hartley

Vita Date of birth November 10, 1989

UE

DRSPORT

André *Lotterer* Vita Date of birth November 19, 1981

Place of birth Rorschach (CH) Residence Port (CH) Height 1.72 m Weight 62 kg

f NeelJaniRacing

RARD

Vita

DMG

M

Br.

16

- 🎾 @neeljani
- 😨 neel-jani.com
- neeljani_offic

Neel **Jani** Date of birth December 8, 1983

Place of birth Duisburg (D) Residence Tokyo () Height 1.84 m Weight 74 kg

f alotterer 🔰 @Andre Lotterer andre lotterer

ARD

Nick **Tandy**

Vita

Date of birth November 5, 1984 Place of birth Bedford (GB) **Residence** Bedford (GB) Height 1.78 m Weight

ORT

EC

DRI

f NickTandyRacing @NickTandyR

Race track >>> Road An electric circuit

Motorsport has always been a driver of developments that subsequently make their way into production vehicles. This now applies to electrified powertrains as well. In the FIA World Endurance Championship (WEC) with Le Mans as its highlight, high-tech hybrid race cars are pitted against each other and in Formula E, all-electric single-seaters are. For Schaeffler, both racing series have become pioneering test beds for future technologies

"The commitments in the WEC and in Formula E have been helping us gain a better understanding of the environment and systems of electric mobility," explains Prof. Peter Gutzmer, Schaeffler's Chief Technology Officer. Be it in terms of systems knowledge, the development of new materials, recuperation (recovery of braking energy) or thermal management – these are important findings which also advance the Schaeffler technology group aside from racing with respect to ideas, visions and technologies for networked mobility for tomorrow. Schaeffler has significantly increased the size of its development team for electric vehicle components and new mobility concepts within a short period of time and is working at full stretch on sustainable mobility solutions. Six examples ...

E-bike

On bicycle expressways, powerful pedelecs – with Schaeffler hardware and software on board – provide a particularly fast and eco-friendly means of transportation for shorter distances. Branded as SCHAEFFLER VELOSOLUTIONS, the company offers an extensive and innovative product range. See also: www.schaeffler.velosolutions.com

Electric car

Schaeffler's electric axles (pictured) help make traffic noise in inner cities a thing of the past, moving forward with a wide product range from Herzogenaurach. In this context, Schaeffler has developed an innovative modular system for electric axles in various configurations and build levels.

Bio hybrid

The innovative and compact mobility solution for urban areas not only provides weather protection but, featuring four wheels including an electric pedelec drive, high driving stability and ample stowage space. In spring of 2016, Schaeffler unveiled this design and development concept that met with positive response around the globe.

E-board

In addition to its handy dimensions, this ideal means of transportation for short distances in urban areas boasts hydraulic brakes and a range of 25 kilometers. At CES in Las Vegas in January 2017, Schaeffler showcased this prototype. Integrated in the board is a battery that drives the rear axle via an electric motor. The e-board is controlled using a stick with an ergonomically shaped handle.

Robot taxi

Self-driving buses with integrated wheel hub motors (pictured) from Schaeffler could provide a means of demand-based zero-emissions short-range public transportation in the future. All the drive components except for the battery are completely installed in the wheel. They include the electric motor, power electronics, the brake and the cooling system. eWheelDrive makes all-new drive concepts possible.

Hybrid vehicle

Hybrid components will continue to make conventional IC engine based powertrains more efficient. Schaeffler offers solutions across the entire range of electrification potential – from the 48-volt hybrid to the plug-in hybrid for various mounting positions to all-electric axles that assist the IC engine or serve as the sole short-term source of propulsion.

Partners for 70 years

20

The first model marked the beginning of the collaboration between Porsche and Schaeffler in 1948. A flashback to an intensive and innovative partnership between a manufacturer and a supplier with a shared vision of automotive progress

Porsche that started as far back as in the days motive progress have been brought to market during this period of time – see page at right. In addition to hydraulic bucket tappets, they include complex components such as electromechanical camshaft adjusters and roll stabilizers. A prototype of the latter was presented by Schaeffler in the CO₂ncept-10% concept ve-

Cayenne to demonstrate the optimization potential of modern automobiles yet to be tapped. The wide range of coordinated Schaeffler prodemissions to drop by ten percent.

Know-how and ingenuity

Not only Porsche but all automobile manufacturers around the globe rely on innovative and active support by suppliers that engineering thanks to the ingenuity of their

Porsche 356

The #cage-guided #INA needle bearing i The #cage-guided #INA needle bearing is a fundamental invention the Schaeffler brothers achieve in the late 40s. Its advantages: reduced friction and torque stability. Many transmissions only become fit for high-speed freeway driving due to these bearings. Obviously Porsche is among Schaeffler's customers

Porsche 911

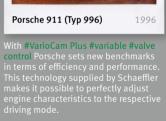
first #diaphragm spring clutch on the

from 1963 on

Porsche 917

In 1970, Porsche evolves from a class to an overall winner at Le Mans. Operating in the twelve-cylinder engine of the 917 are #bucket tappets of Schaeffler's INA brand. For Schaeffler, the racing commitment serves as a test laboratory. Today, Schaeffler has a long history as a specialist in valve train components and systems.

Porsche 959


Porsche 911 (Typ 996)

Schaeffler engineers introduce hydraulics in the valve train. #hydraulic #bucket tappets like time-intensive garage maintenance by the bucket tappets independently adjusting valve lash.

driven wheels at the end of the 80s. ne #hydraulic #chain tensioner, a Schaeffler invention Porsche drivers enjoyed in the 911 as well.

2013

Porsche Cayenne S Hybrid

This Cayenne is the first hybrid vehicle from Porsche. The hybrid module with an integrated electric motor sits between the IC engine and the transmission. A #hybrid clutch from LuK harmoniously moderates the interaction between the individual components.

Porsche 918 Spyder

marks the pinnacle of what is technically feasible. Detailed work and sophistication are featured in abundance here, the wheel bearings from Schaeffler being a case in point. In these bearings, **#ceramic balls** replace the usual steel rolling elements, saving 640 grams of weight.

Schaeffler is a global competence partner

Sustainable mobility is the primary development goal at Schaeffler around the globe. The product portfolio encompasses technologies for the engine, transmission and suspension as well as hybrid elements and electric powertrains, ranging from single components to complex systems. Energy efficiency takes center stage in all of them.

Mobility *for tomorrow*

For Schaeffler, innovation has been part of its corporate DNA since the foundation of the company. It is based on lateral and interdisciplinary thinking

Schaeffler is known as an innovative leader delivering a wealth of technologies that make automobiles more fuel-efficient, environmentally friendly, and safer, as well as products for trains, aircraft, wind turbines, and many other industrial sectors. Schaeffler can be found wherever things are in motion – and motion also means mobility. The challenges facing mobility of the future are immense. That's why Schaeffler is committed to its holistic "mobility for tomorrow" concept, geared to finding sustainable solutions for the world of tomorrow.

> Mobility for tomorrow Under this concept, Schaeffler concentrates on four focus areas: environmentally friendly drive systems, urban mobility, interurban mobility and energy chain

Compact info

Timo Bernhard

★ February 24, 1981

♥ @Timo Bernhard

Bamber

***** July 09, 1990

♥ @earlbamber

Brendon Hartley

* November 10, 1989

Palmerston North (NZ)

Wanganui (NZ)

Homburg/Saar (D)

Tur annuments

Rorschach (CH)

André Lotterer

November 19, 1981
 Duisburg (D)
 ØAndre Lotterer

Nick Tandy

November 05, 1984
 Bedford (GB)
 MickTandyR

Schaeffler facts

Porsche 919 Hybrid (LMP1)

- Combustion engine V4, turbocharger, 2,000 cc, < 500 hp
- Hybrid system KERS at the front axle and exhaust gas energy recuperation, > 400 hp via motor-generator unit (MGU)
- Hybrid class 8 MJ
- Energy storage system Lithium-ion-battery cells
- Drive system rear-wheel drive via internal combustion engine, temporary front-wheel drive via hybrid system
 Fuel tank capacity 62.3 l
- Minimum weight 875 kg
- Dimensions Length 4,650 mm, Width 1,900 mm, Height 1,050 mm

Facts about the new Porsche 919 Hybrid

60-70 % new developments in comparison to the previous model

outings

900 hp system performance

A turbine turns **120,000** times a minute in the exhaust tract for the purpose of exhaust gas recovery

Success in the WEC (2014–2017)

wins fastest race laps Drivers' world championship titles

The race trackCircuit des 24 Heures State 1.0 km/h

Schaeffler

- Porsche
- porsche_newsroor

Learn more about mobility for tomorrow

WEC

9 @FIAWEC

Sunday, June 18 15:00 WEC

Saturday, June 17 09:00-09:45 WEC

15:00

10:15–11:00 Porsche Carrera Cup

WFC

11:30-12:25 Road to Le Mans

Finish 24h Le Mans

Start 24h Le Mans

Warm up

Race

Race 2